INDIAN SCHOOL MUSCAT

PRE BOARD – TERM 2

SETs A, B, C

FEBRUARY 2022

CLASS X

Marking Scheme – MATHEMATICS (041) [THEORY]

Q.NO.	ANSWER	MARKS
1.	We have $(k+1)x^2 - 2(k+1)x + 1 = 0$	
	Comparing with $Ax^2 + Bx + C = 0$ we get	
	A = (k+1), B = -2(k+1), C = 1	
	If roots are equal, then $D = 0$, i.e.	
	$B^2=4AC$	1/2
	$4(k+1)^2 = 4(k+1)^2$	1/2
	$k^2 + 2k + 1 = k + 1$	
	$k^2 + k = 0$	
	k(k+1) = 0	
	k = 0, -1	1/2
	k=-1 does not satisfy the equation, thus $k=0$	1/2
2.	We have $\sqrt{3x^2 + 6} = 9$	
	$3x^2 + 6 = 81$	1/2
	$3x^2 = 81 - 6 = 75$	
	2 75 25	1/2
	$x^2 = \frac{75}{3} = 25$	
	Thus $x = \pm 5$	1/2
	Hence 5 is positive root.	1/2
	(OR)	
	Let the present age of Veena be x years.	1/2
	So, $(x-5)2 = 5x + 11$	1/2
	$\Rightarrow x^2 + 25 - 10x = 5x + 1$	
	$\Rightarrow x2 - 15x + 14 = 0 \Rightarrow (x - 14)(x - 1) = 0 \Rightarrow x = 1 \text{ or } 14$ $x = 14 \text{ years (rejecting } x = 1 \text{ as in that case Vector's are 5 years are will be year)}$	1/2
	x = 14 years (rejecting x = 1 as in that case Veena's age 5 years ago will be –ve) So, Veena's present age is 14 years.	1/2
	, , , , , , ,	

3.	Let the first term be a , common difference be d and n th term be a_n .	
	$7a_7 = 11a_{11}$	1/2
	Now $7(a+6d) = 11(a+10d)$	1/2
	7a + 42d = 11a + 110d	, -
	11a - 7a = 42d - 110d	
	, 4a = -68d	1/
	4a + 68d = 0	1/2
	4(a+17d) = 0 $a+17d = 0$	
	Hence, $a_{18} = 0$	1/2
	(OR)	
	We have $a_n = 5n - 3$	
	Substituting $n=1$ and 10 we have	
	a = 2	1/2
	$a_{\scriptscriptstyle 10}~=47$	'-
	Thus $S_n = \frac{n}{2}(a + a_n)$	1/2
	$S_{10}=rac{10}{2}(2+47)$	1/2
	$=5\times49=245$	1/2
4.	We have $\angle AOQ = 58^{\circ}$	
	Since angle $\angle ABQ$ and $\angle AOQ$ are the angle on the circumference of the circle by the same arc,	
	$\angle ABQ = \frac{1}{2} \angle AOQ$	1/2
	$=\frac{1}{2}\times58^{\circ}=29^{\circ}$	
	Here OA is perpendicular to TA because OA is radius and TA is tangent at A .	
	Thus $\angle BAT = 90^{\circ}$	1
	$\angle ABQ = \angle ABT$	
	Now in ΔBAT ,	
	$\angle ATB = 90^{\circ} - \angle ABT$	
	$=90^\circ-29^\circ=61^\circ$	1/
	Thus $\angle ATQ = \angle ATB = 61^{\circ}$	1/2
5.	Let the edge of single cube be x .	1/2
	Volume of single cube= Volume of three cubes	
	$x^3 = 3^3 + 4^3 + 5^3$	1
	=27+64+125=216	
	x = 6 cm	1/2

6.	We have $M_d = M + 3$	1/2
	Now $M_o = 3M_d - 2M$	17
	=3(M+3)-2	1/2
	=3M+9-2M=M+9	1/2
	Hence mode exceeds mean by 9.	1/2
7.	2 Concentric circles with centre O. Point P and perpendicular bisector of OP Third circle and Tangents	1 1 1
8.	Let C be the point where the ball is lying. As per given in question we have drawn figure below.	
	$X \longrightarrow A \longrightarrow $	Fig 1
	$C \xrightarrow{60^{\circ}} x B$ Due to alternate angles we obtain	
	$\angle XAC = \angle ACB = 60^{\circ}$	
	In $\triangle ABC$, $\tan 60^{\circ} = \frac{AB}{BC}$	1
	$\sqrt{3} = \frac{20}{x}$	
	$x = \frac{20}{\sqrt{3}} = 20\left(\frac{\sqrt{3}}{3}\right)$	1
	Hence, distance between ball and foot of tower is 11.53 m.	
9.	Mode is 36 which lies in class 30-40, therefore this is model class.	
	Here, $f_0 = f$, $f_2 = 16$, $f_2 = 12$, $l = 30$ and $h = 10$	
	Mode, $M_o = l + \left(\frac{f_l - f_0}{2f_l - f_0 - f_0}\right)h$	1/2
	$36 = 30 + \frac{16 - f}{2 \times 16 - f - 12} \times 10$	11/2
	$6 = \frac{16 - f}{20 - f} \times 10$	1/2
	120 - 6f = 160 - 10f	1/2
	$4f = 40 \Rightarrow f = 10$	

10.		owing cumulative f	requency table to		cf
	find median clas				column-
	Marks	No. of students	c.f.		1
	0-10	5	5		
	10-20	15	20		
	20-30	30	50		
	30-40	8	58		
	40-50	2	60		
		N = 60			
	We have	$N = 60 \; ; \frac{N}{2} = 30$)		
	Cumulative frequency the corresponding section is 20-20.	quency just greater ng class is 20-30. T	than $\frac{N}{2}$ is 50 and Thus median class		
	Now $l =$	=20, f=30, F=	$20,\ h=10$		
	Median,	$M_d = l + \left(\frac{\frac{N}{2} - l}{l}\right)$	$\left(\frac{F}{F}\right) \times h$		1/2
			$\left(\frac{0-20}{30}\right) \times 10$		1
			$\frac{0}{0} = 20 + \frac{10}{3}$		1/
		=20+3.3	3		1/2
	Thus	Md = 23.33			
OR	x_i	f_i	$f_i x_i$		Mid x − ½
	3	5	15		$\sum fx$
	9	4	36		column –
	15	1	15		1½
	21	6	126		
	27	4	108		
	Total Mean	$\sum f_i = 20$ $M = \frac{\sum f_i x_i}{\sum f_i} = \frac{2}{3}$	$\sum f_i x_i = 300$ $\frac{300}{20} = 15$		1/2 + 1/2
11.		as of circle be x . A figure shown below		estion	
	$5 \operatorname{cm} P$	R 13 cm Q			Fig 1

	Since length of tangents from an external point to a circle are equal,	
	At A , $AP = AR = 5 - x$ (1)	
	At $B BP = BQ = x$ (2)	1
	At C $CR = CQ = 12 - x$ (3)	
	Here, $AB=5$ cm, $BC=12$ cm and $\DeltaB=90^{\circ}$	
	Now $AC = \sqrt{12^2 + 5^2} = \sqrt{144 + 25}$	
	$=\sqrt{169}=13~{ m cm}$	1
	Now $AC = AR + RC$	
	13 = 5 - x + 12 - x	
	2x = 17 - 13 = 4	
	$x = \frac{4}{2} = 2 \text{ cm}$	1
	Hence, radius of the circle is 2 cm.	
12.		2.8 m
	Surface area of tent,	
	= C.S.A of cone $+ C.S.A$ of cylinder.	11/2
	$= \pi r l + 2\pi r h = \pi r (l+2h)$	2.1 m
	Thus $\pi r(l+2h) = \frac{22}{7} \times \frac{3}{2}(2.8+2\times 2.1)$	
	$=\frac{33}{7}\times7=33 \text{ m}^2$	1/2
	3 m −	1
	Total Cost = $33 \times 500 = 16,500Rs$	1
(OR)	Let t be the time in which the level of the water in the tank will rise by 21 cm.	
	Length of water that flows in 1 hour is 15 km or	1/2
	15000 m. Radius of pipe is $\frac{14}{2} = 7 \text{ cm}$ or 0.07 m.	
	_	
	Volume of water in 1 hour, $\frac{22}{(7)^2} = 77000$	
	$=\frac{22}{7}\times\left(\frac{7}{100}\right)^2\times15000$	1
	$=231 \text{ m}^3$	1/2
	Volume of water in time t ,	1/2
	$= 231t \text{ m}^3$	72
	This volume of water is equal to the water flowed into the cuboidal pond which is 50 m long, 44 m wide and 0.21 m high.	
	Thus $231t = 50 \times 44 \times 0.21$	1
	$t = \frac{50 \times 44 \times 0.21}{231} = 2 \text{ Hours}$	1/2

13.	_	Fig 1
15.		Fig 1
	$\tan 60^\circ = \frac{h}{x} \Rightarrow \sqrt{3}x = h$	1
	l hm.	
	$\tan 30^\circ = \frac{h}{400 + x} \Rightarrow \frac{400 + x}{\sqrt{3}} = h$	1/2
	$\frac{\tan 30^{\circ} - \frac{1}{400 + x}}{\sqrt{3}} \rightarrow \frac{1}{\sqrt{3}} - n$	
	Solving, $x = 200$ m (horizontal distance) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/2
	torizontal ground	
	Height (h) = $200\sqrt{3}$ m	1
14.	(i) 23, 21, 19, 5	1/2
	Obviously AP: $a = 23$, $d = -2$ and $a_n = 5$ Solving, $n = 10$	1/2
	Solving, II – To	
	(ii) $a_9 = a + 8d = 7$	1
	$a_2 - a_9 = 21 - 7 = 14$	1
	Set B	
1.	We have $x^2 - 8x + k = 0$	
	Comparing with $Ax^2 + Bx + C = 0$ we get	
	A = 1, B = -8, C = k Since the given equation has real roots,	
	$B^2 - 4AC > 0$	1/2
	$(-8)^2 - 4(1)(k) \ge 0$	1/2
	$64 - 4k \ge 0$	
	$16 - k \ge 0$ $16 \ge k$	
	Thus $k \leq 16$	1/2
	Therefore the largest value of k is 16.	1/2
5.	Side of the cube, $a = \sqrt[3]{8} = 2$ cm	1
	Length of cuboid, $l = 4$ cm	
	Breadth, $b = 2 \text{ cm}$	
	Height, $h = 2 \text{ cm}$	
	Surface area of cuboid = $2(l \times b + b \times h + h \times l)$	
	$=2(4\times 2+2\times 2+2\times 4)$	
	$=2 imes20=40~\mathrm{cm^2}$	1

11. At A , $AP = AR = 6$ cm (1)	
At B , $BP = BQ = 8 \text{ cm}$ (2)	Fig 1
At C , $CR = CQ = x$ (3)	
Perimeter of $\triangle ABC$,	
p = AP + PB + BQ + QC + CR + RA	
=6+8+8+x+x+6	1
=28+2x	
Now area $\Delta ABC = \frac{1}{2}rp$	
$84 = \frac{1}{2} \times 4 \times (28 + 2x)$	1
84 = 56 + 4x	1/2
$21 = 14 + x \implies x = 7$,2
AC = AR + RC = 6 + 7 = 13 cm	
BC = BQ + QC = 8 + 7 = 15 cm	1/2
14.(ii) $a_8 = a + 7d = 9$	1
$a_3 - a_8 = 19 - 9 = 10$ Set C	1
1. We have $2x^2 - 4x + 3 = 0$	
Comparing the given equation with $ax^2 + bx + c = 0$	
we get $a = 2$ $b = -4$, $c = 3$	
Now $D = b^2 - 4ac$	1/2
$= (-4)^2 - 4(2) \times (3)$	1/2
= -8 < 0 or (-ve)	1/2
Hence, the given equation has no real roots.	
So Ajay is wrong.	1/2
	72
3.	
$a_n = s_n$	1
a = 25	
$(0 + 4.7) = 5(-2+25) = 5 \times 23 = 115$	1
3. $a_{10} = 3n-5$ $a_{10} = 25$ $a_{10} = \frac{10}{2} (a_{1} + a_{10}) = 5 (-2 + 25) = 5 \times 23 = 115$ $\vdots S_{10} = \frac{10}{2} (a_{1} + a_{10}) = 5 (-2 + 25) = 5 \times 23 = 115$	=
5. Let the radius of spherical ball be r .	
Volume of spherical ball = Volume of three balls	
$\frac{4}{3}\pi r^3 = \frac{4}{3}\pi [3^3 + 4^3 + 5^3]$	1
$r^3 = 27 + 64 + 125 = 216$	1/2
r = 6 cm	1/2

6.	$3\alpha^2 + 25 = 100$		1/2
	3 x ² = 75		1/2
	$n^2 = 25$		
	$\alpha = \pm 5$		1/2
	$n = \pm 5$: the root is 5		1/2
11.	PA = PB = 4 cm		1
	Here $\angle PAB$ and $\angle BAC$ are supplementary angles,	$\stackrel{P}{\wedge}$	
	$\angle PAB = 180^{\circ} - 135^{\circ} = 45^{\circ}$		1/2
	Angle $\angle ABP$ and $= \angle PAB = 45^{\circ}$ opposite angles of		
	equal sides, thus	A B	
	$\angle ABP = \angle PAB = 45^{\circ}$		1/2
	In triangle $\triangle APB$ we have	·C \	/ 2
	$\angle APB$		
	$=180^{\circ} - \angle ABP - \angle BAP$		
	$=180^{\circ} - 45^{\circ} - 45^{\circ} = 90^{\circ}$		
	Thus ΔAPB is a isosceles right angled triangle		
	Now $AB^2 = AP^2 + BP^2 = 2AP^2$		1/2
	$=2\times 4^2=32$		/2
	Hence $AB = \sqrt{32} = 4\sqrt{2}$ cm		1/2
			1/2
2.(ii)	$a_9 = a + 8d = 7$		1
	$a_3 - a_9 = 19 - 7 = 12$		1

End of the marking scheme